

MODULE SPECIFICATION FORM

Module Title: Atmospherics and Climate Change Level: 6 Credit Value: 20								
Module code: SCI612 Cost		t Centre:		GAFS	JAC	JACS2 code: F810)
Semester(s) in which to be	offered:	1	With	effect froi	m: Sep	otember 20°	13	
Office use only: To be completed by AQSU:			Date	approved revised: ion no:	d: Aug - 1	August 2013 - 1		
Existing/New: New	sting/New: New Title of module being replaced (if any):							
Originating Academic Chemistry area:				Module Leader:	,	Amiya Chaudhry		
Module duration (total hours) Scheduled learning & teaching hours Independent study hours	200 60 140	Status	s: Cor	e				
		I						

Percentage taught by Subjects other than originating Subject (please name other Subjects):

Pre-requisites
per
programme
(between
levels):

Module Aims:

To examine:

- The major types of chemical processes in the atmosphere.
- The climate system
- Atmospheric boundary layer climates
- Connections of variations of the climate with the chemical composition of the atmosphere
- Climate system simulation: numerical and computational concepts

Expected Learning Outcomes

At the end of this module, students should be able to:

Knowledge and Understanding:

- 1. Demonstrate their understanding of the major types of chemical processes in the atmosphere such as ozone depletion, acid rain, aerosols.
- 2. Critically assess the main factors affecting the Earth's climate and the likely progress of climate change due to anthropogenic activity.
- 3. Evaluate selected types of climate model in terms of both value and limitations.
- 4. Critically interpret output from climate modelling / simulations.

Transferable/Key Skills and other attributes:

- 1. Critical reading
- 2. Problem solving
- 3. Use modelling/simulation software

Assessment:

Assessment 1: Literature review based on learning outcome 1&2 assessing the risk of accelerated climate change.

Assessment 2: Using designated software students will investigate the sensitivity of simulated climate data to selected environmental input parameters and produce a written report summarising the outcomes and reflecting upon their significance.

Assessme nt number	Learning Outcomes to be met	Type of assessment	Weighting	Duration (if exam)	Word count (or equivalent if appropriate)
1	1-2	Literature Review	50%		2000
2	3-4	Report	50%		2000

Learning and Teaching Strategies:

This module will be taught through a combination of lectures and practical sessions using climate modelling software. On-line tutorials will be made available to students in order to train them in use of the climate modelling software.

Syllabus outline:

- Atmospheric radiation and photochemistry
- Chemistry of the stratosphere
- Chemistry of the troposphere
- Climate and variations: possible explanations for present variations
- Boundary layer climates
- Climate modelling. Overview of climate model approaches, and case studies illustrating their value and limitations. Collection and analysis of climate data from computer simulations.

Bibliography:

Essential reading:

- Neelin, J.D. (2011) Climate Change and Climate Modeling. Cambridge: Cambridge University Press.
- Seinfeld, J.H. and Pandis, S.N. (2006) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*. Wiley
- Barry, R.G. and Chorley, R.J. (2009) Atmosphere, Weather and Climate 9th Ed. Routledge

Other indicative reading:

 McGuffie, K. and Henderson-Sellers, A. (2005) A Climate Modelling Primer. 3rd ed. Chichester: John Wiley and Sons Ltd.

Electronic Resources:

Atmospheric Environment / Elsevier Science of The Total Environment / Elsevier Global and Planetary Change / Elsevier

and other Internet and journal sources as directed by tutor.